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Abstract. Turbulent transport at the edge of a tokamak plasma is strongly affected
by magnetic field perturbations induced by an ergodic divertor. Experimental
observations show a decrease of density fluctuations and a stabilization of large scale
structures. Surprisingly, there is no evidence of a change of the turbulent cross
field diffusivity. In the present work, these features are reproduced by 3D numerical
simulations of resistive ballooning turbulence driven by a constant heat flux from the
plasma core. Additionally, the simulations show an increase of velocity fluctuations in
the stochastic region which provides an explanation for the observation of an roughly
unchanged mean turbulent flux. This result is important for the performance of the
ergodic divertor since any means of lowering the confinement in the divertor volume
opens the operational space of the divertor. Although the present analysis is applied
to the Tore Supra ergodic divertor, the basic trends of the model and analysis must
capture features of transport during ELMs. An important feature of the dynamics
of turbulent transport is the appearance of large scale transport events induced by
radially elongated convection cells (streamers) and the interplay of the latter with
sheared mean and zonal flows. In the stochastic layer, the poloidal mean flow is found
to be suppressed and zonal flows are reduced. Larger turbulent fronts propagating
in the radial direction tend to resist the shearing induced by the stochasticity of the
magnetic field lines.
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1. Introduction

The aim of this work is to provide an understanding of basic effects of static magnetic
field perturbations on turbulence and transport at the tokamak plasma edge. The
interest on this topic is twofold: First, the presence of turbulent cross field transport
in regions of stochastic magnetic field lines is highly important for the performance of
ergodic divertors [1]. Second, the model of turbulence in the presence of magnetic field
perturbations allows to study transport due to the so called magnetic flutter, i.e. the fact
that transport parallel to the perturbed magnetic field can have a significant component
perpendicular to the unperturbed field. This effect is one part of the complete problem of
electromagnetic turbulence and transport. Furthermore, the basic trends of the model
and analysis must capture features of transport during ELMs insofar that one considers
that stochasticity plays a significant role in the onset of transport during ELMs.

Experimental observations of density fluctuations on TEXT [2] and Tore Supra
(3, 4, 5] with ergodic divertor show a decrease of the fluctuation level and a stabilization
of large scale structures in the stochastic region. Surprisingly, there is no evidence of a
change of the turbulent cross field diffusivity [1, 6].

The problem is modeled using 3D numerical simulations of resistive ballooning
turbulence including magnetic field perturbations similar to those induced by the
divertor coils on Tore Supra. In previous works [7, 8|, simulations in a simplified model
reproduced qualitatively the experimentally observed decrease of the density fluctuation
level as well as the stabilization of large scale structures. Additionally, an increase of the
velocity fluctuation level was found which provides an explanation for the experimental
observation of a roughly unchanged level of turbulent flux. This result is important for
the performance of the ergodic divertor since any means of lowering the confinement in
the divertor volume opens the operational space of the divertor. Concerning transport
during ELMs, a similar statement can be made, since stochasticity does not quench the
anomalous cross-field transport, the latter remains effective in spreading the heat pulse.

In the present work, two important improvements of the model have been made.
First, the dynamics of Fourier modes that are not resonant with the magnetic field
perturbation are included. Second, the assumption of scale separability between
equilibrium and fluctuations has been dropped and the fluctuations are allowed to
modify the profiles. Regarding the pressure profile, this allows for the radial propagation
of low or high pressure “bursts” [9]. These large scale transport events are linked
to radially elongated convection cells (“streamers”) [10] which are expected to be
strongly affected by the shearing due to stochastic field lines. The dynamics of the
poloidal velocity profile is also included self-consistently which allows for the generation
of sheared mean and zonal flows by both, the turbulence and the magnetic field
perturbation. As the regulation of large scale transport events via these flows plays
a significant role in determining the dynamics of turbulent transport [10, 11], the latter
is expected to be strongly influenced by the magnetic field perturbation not only due
to a change of the fluctuation amplitudes and/or phase but also via a modification of
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sheared mean and zonal flows.

2. Model equations

The model consists of normalized reduced electrostatic MHD equations for the electric
potential ¢ and the pressure p [7]:

4Vip=—-Vi¢—Gp+vVie, (1)
dip = 0.Go+ x Vip+x.Vip+ 5. (2)

Here d; = 0, + {¢, - }, where the Poisson bracket represents the convection due to
the E x B velocity ¥ = Upxp. The gradients are split into components parallel and
perpendicular to the magnetic field which is given by B = B,{é,+1/[Rq(r)]és} +6Bin
toroidal coordinates. The magnetic field perturbation 6B is chosen to model those
generated by the ergodic divertor on Tore Supra, i.e. 5§/B = VY x é,, where
the poloidal magnetic flux 61 is approximatively described by a sum over harmonics
0% = 3 ¥m(r) cos(mb — 6¢) and the poloidal spectrum ,,(r) is modeled by ¥, (r) =
¥(r) sin(ay,) /o with a,, = (m — 18)w/6. The safety factor ¢(r) is monotonically
increasing in the computational radial domain and the latter is restricted to the interval
between the ¢ = 2 and ¢ = 3 surfaces. Slab geometry is used in the vicinity of a
reference surface r = ry = r,_25 and the radial profile of the perturbation ¢ (r) grows
exponentially with radius reaching its maximal value ¥y, at 7 = 74,=3. It is then
smoothly extrapolated to zero in a “buffer” zone r,-3 < r < r,—3 + A. The operator
G ~ V x (B/B?) -V emerges from the toroidal curvature of the field lines. It appears
in Egs. (1) and (2) accounting for the compressibility of the diamagnetic and electric
drift, respectively. The coefficient . is essentially the ratio between a typical pressure
gradient length and the major radius of the torus [12]. The coefficients v, x| and
v, correspond to the perpendicular viscosity and the parallel and perpendicular heat
diffusivity, respectively. The system is driven by a constant incoming flux that is given
by the radial integral over the source S. The latter has Gaussian shape and is localized
in a left “buffer” zone ry—g — A <1 < 14es.

Egs. (1), (2) describe the evolution of the complete fields of potential and pressure,
i.e. the backreaction of the fluctuations on the profiles is included self-consistently [9].
Averaging over (unperturbed) magnetic surfaces, one obtains the evolution equations for
the potential and pressure profiles, respectively. Using the relation between the potential
and the E x B velocity, (vr,v9) = (—0O(ro0)®, Or @), the equation for the potential can be
directly written in terms of the poloidal velocity,

Oy = — O ((Dy0,) — v0,Ug) + Asp (3)
atﬁ = - ar ((ﬁﬁr> - XLarﬁ+ P(5B) +S ) (4)

where Asp = —(0r00)00 V) ¢) and g = —X||(O(re0) 0¥V p) are respectively the flow
generation and the heat flux due to the magnetic flutter. Note that the parallel gradient
is V|| = V|o+{d%, - }, where V| is the component due to the unperturbed field. Eq. (3)
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shows that the generation of mean and zonal flows is governed by the balance between
three different effects: the kinetic Reynolds stress, the viscous damping and the magnetic
flutter. Equivalently, the total energy flux is decomposed into three components: the
turbulent flux T'y,, = (p?,), the collisional damping .oy = —x 1 0,p and the flux due
to magnetic flutter I'sp. According to Eq. (4), in a statistically stationary state, the
sum of the time average of these three fluxes must be equal to the radial integral of the
source,
T dt r
/0 T (Cyurt + Leo + Tsp) = /Tmm dr'S(r') = T4y = const ,

in the region r > r,—». Here, the following boundary conditions have been used: all
fluctuations qS, P, the mean potential ¢ and the gradient of the pressure profile 0,p vanish
at the left boundary of the computational box, 7., = 74—2 — A. At the right boundary,
QNS, P, ¢ and P vanish.

Two different sets of simulations have been done, differing in the strength of the
instability drive, characterized by the total incoming heat flux, I';,; = 8 and I';,; = 36,
respectively. For both cases, one run has been performed with a maximal perturbation
of the magnetic field of 9., = 63.66 which corresponds to a maximal value of the
Chirikov overlapping parameter [1] of o = 3.0. For comparison, a second simulation
with ¥, = 0 has been done in both cases. The values of the other parameters are
kept constant for all four runs. They are given by v = x, =2, x|, = 1, and 4, = 0.04.
For a given series of toroidal wavenumbers, i.e. n = 0,An,2An, ..., Ny,., all Fourier
modes that are resonant between ¢ = 2 and ¢ = 3 are included, i.e. those with poloidal
wavenumbers m in the range 2n < m < 3n for each n. With An = 2 and n,,,, = 40, a
total number of 441 Fourier modes is used. In the radial direction, 192 grid points are
used. The perpendicular length scale is given by the resistive ballooning length [7] which
is of the order of the ion Larmor radius at electron temperature. The normalized width
of the radial interval is chosen as 7,3 — ry—2 = 83.33, and A = 25.53. The normalized
poloidal circumference at the reference surface is 277y = 27 - 500. The parallel length
scale is the shear length which is of the order of the large radius and the normalized
toroidal circumference is chosen as 2. Time is normalized to the resistive interchange
time [7].

3. Simulation Results and Discussion

Starting from initial conditions given by a rough estimate of the expected pressure profile
and noise in all other components, the simulations are first run until a statistically
stationary state is reached, i.e. the volume integrated pressure and velocity fluctuate
around stationary mean values. The simulations are then continued for about 2000
normalized time units and the data analyzed. Both of the values chosen for the total
incoming energy flux I'y,; are such that the resulting mean pressure gradient is above
the threshold for resistive ballooning instability. However, as one expects, the mean
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Figure 1. Time averaged radial profiles of the amplitudes of pressure and velocity
fluctuations for T'y,; = 8 (a,c) and Ty, = 36 (b,d). Full lines correspond to the case with
magnetic perturbation and dashed lines indicate the reference case without magnetic
perturbation.

pressure profile is closer to the threshold in the case I'y,; = 8 compared to the case
[0 = 36.

Fig. 1 shows the radial profiles of the amplitudes of pressure and velocity
fluctuations. In both cases, a clear reduction of the level of pressure fluctuations is
observed in the region of stochastic magnetic field lines. Note that as the magnetic
perturbation is maximal at ¢ = 3 and decreasing exponentially radially inwards, the
stochastic region is roughly localized between ¢ = 2.7 and ¢ = 3. Assuming that
density fluctuations follow the behavior of pressure fluctuations, the decrease of their
amplitude is in qualitative agreement with measurements on TEXT [2] and Tore Supra
[3, 4, 5]. Concerning velocity fluctuations, the simulations show a completely different
behavior from those of the pressure fluctuations. Close to the instability threshold
(Tyor = 8), the level of velocity fluctuations is found to increase in the stochastic region
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Figure 2. Time averaged radial profiles of the turbulent radial flux for I'yp; = 8 (a)
and T4, = 36 (b). The cases with and without magnetic perturbation are indicated
respectively by full and dashed lines.

and for the second case, it is roughly unchanged. This has an important consequence
for the turbulent radial flux I';,, which is composed of the product of pressure and
radial velocity fluctuations. As can be seen from Fig. 2, the time averaged level of this
flux is roughly unchanged in the stochastic region, i.e. it does not decrease despite of a
significant decrease of pressure fluctuations. This observation is in qualitative agreement
with the analysis of heat deposition patterns on the plates of the ergodic divertor on
Tore Supra. The latter shows that the turbulent heat diffusivity is of about the same
order of magnitude compared to cases with limiter operation [1, 6]. Note that the phase
between pressure and velocity fluctuations also enters into the determination of the
turbulent flux.

From the poloidal wavenumber spectra (Fig. 3), it follows that the decrease of
pressure fluctuations in the stochastic region is essentially due to a reduction of large
scale structures. The small scales are unaffected. This is in qualitative agreement
with measurements on Tore Supra [3, 4, 5]. Note that the “jump” in the spectrum at
m = 17,18 is difficult to interpret because the (m,n) = (18, 6) component is in resonance
with the most important component of the magnetic perturbation. The latter gives rise
to nonzero equilibrium (i.e. time average) contributions in the resonant components of
the pressure field, i.e. the pressure flattens on magnetic islands [7]. These contributions
have to be subtracted from the complete field in order to get the pressure fluctuations.
As the time average can only be calculated after the simulation has finished, the precision
of this calculus is restricted by the relatively low number of time points (i.e. 3D fields)
stored simultaneously (typically 100).

Again, the behavior of velocity fluctuations is different. As can be seen from Fig.
3, the increase of velocity fluctuations in the stochastic region (case 'y = 8) is due to
an increase of small scale structures. The picture is less clear in the second case but the
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Figure 3. Time averaged poloidal wavenumber spectra of pressure and velocity
fluctuations in the stochastic region for I';,; = 8 (a,c) and T'yyy = 36 (b,d). Only those
modes localized between ¢ = 2.7 and ¢ = 3 have been considered. Circles correspond
to the case with magnetic perturbation and crosses indicate the reference case without
magnetic perturbation.

tendency is the same.

The general results obtained from the wavenumber spectra are confirmed when
looking at the frequency spectra of the fluctuations (Fig. 4): In the case close to the
instability threshold one finds a reduction of low frequency pressure fluctuations and
a significant increase of high frequency velocity fluctuations with a peak at w ~ 0.3.
There is also a slight increase of high frequency pressure fluctuations, more precisely,
a weakening of the slope of the spectrum is observed. The same result has been found
in recent measurements on Tore Supra [5]. In the second case, the situation is less
clear, although the tendency is the same for the velocity fluctuations. The peak in the
frequency spectra, especially in the case close to the threshold, may be related to an
eventually dominating linear mode. Note that such a mode must emerge from a solution
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Figure 4. Frequency spectra of the (6, ¢) averaged pressure and velocity fluctuations
at the radial position r = rg—s.9 for I'yss = 8 (a,c) and I'yor = 36 (b,d). The cases with
and without magnetic perturbation are indicated respectively by full and dashed lines.

of the perturbed linear problem, because unperturbed linear resistive ballooning modes
do not have a real frequency.

Concerning the dynamics of the turbulent radial flux, it has been observed now
in many different turbulence simulations [13, 14, 9, 15] that transport properties in
tokamaks are governed by the interplay between radially extended convection cells
(streamers) that give rise to large scale transport events and poloidal zonal flows
that tend to self-regulate these bursts [10, 11]. Also experimental measurements show
evidence of bursty transport [16, 17] and zonal flows [18]. Even if the time averaged mean
value of the turbulent flux is roughly unchanged (as discussed before), the appearance
of large scale transport events is expected to be strongly affected by the shearing of
streamers due to the stochastic magnetic field. Additionally, the transport dynamics is
modified by the influence of the magnetic field perturbation on the generation of mean
and zonal flows (Eq. 3). As can be seen from Fig. 5, in both simulation cases, the mean
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Figure 5. Radial profiles of the mean poloidal velocity and the time averaged
amplitudes of zonal flows for I';,; = 8 (a,c) and T'yy = 36 (b,d). The cases with
and without magnetic perturbation are indicated respectively by full and dashed lines.

flow is completely suppressed in the stochastic layer and the amplitude of zonal flows is
reduced. The latter have been extracted from the total poloidal flow 7y by subtracting
the low frequency (here w < 0.07) components.

In the more unstable case (I';,; = 36), the suppression of mean flow and reduction
of zonal flows is found to be the dominant mechanism concerning the modification of
the transport dynamics: The frequency spectrum of the turbulent flux is not very clear
but roughly shows two different slopes for low and high frequencies, respectively, and
the crossover between these two parts is shifted to low frequencies in the stochastic layer
(Fig. 6b). This behavior is exactly the one observed when artificially suppressing the
poloidal flow [9]. This means that large amplitude events (which are rare) can propagate
in the stochastic region. We tried to illustrate this in Fig. 7, where the dynamics of
the pressure profile is shown. Large scale transport events are high pressure bursts
propagating radially outward or depressions traveling inward.



Turbulent Transport with Stochastic Magnetic Field Lines

(a)

1073

2
|

turb’

=
o

turbulent flux |

=
o

!
IS
T

!
)
T

frequency w

(b)

10"

2
|

turb’

turbulent flux |
=
1S

10

10°

frequency w

Figure 6. Frequency spectra of the turbulent radial flux at the radial position
T = Trq=n9 for I';py = 8 (a) and Iy, = 36 (b). The cases with and without magnetic
perturbation are indicated respectively by full and dashed lines.

The situation is different in the case close to the instability threshold. Here,
although the mean and zonal flows are reduced, the spectrum of the turbulent flux
shows a reduction of low frequency components and a weakening of the slope for
high frequencies (Fig. 6a). Following the discussion above, this modification must be
due to the second possible mechanism, i.e. a direct change of the fluctuations due to
the magnetic field perturbation. This means that in the pressure profile dynamics
fluctuations appear to be more rapid in the stochastic region and in general, the

amplitudes of large events are reduced, i.e. crossing of these events is observed less
frequently.

pressure

3000

radius 973

time

Figure 7. Time evolution of the radial pressure profiles for T';,; = 8 (a) and T'y,; = 36

(b).
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4. Conclusions

Perturbations of the equilibrium magnetic field with generation of stochastic magnetic
field lines at the edge of a tokamak plasma have significant effects on turbulent
fluctuations. Large scale pressure fluctuations decrease and small scale velocity
fluctuations increase in the stochastic layer. This results in an roughly unchanged
level of turbulent energy flux. For an ergodic divertor such as in Tore Supra this
means that despite a lower level of pressure fluctuations, the turbulent cross-field
transport is not quenched which is a beneficial effect for the performance of the divertor.
Furthermore, applying this result to the issue of the onset of transport during ELMs
where stochasticity is considered to play a significant role, one expects anomalous cross-
field transport to remain effective in spreading the heat pulse.

Although the average value of the turbulent flux does not change significantly, its
dynamics is strongly affected by the stochasticity of field lines. An important effect in
this context is the suppression of mean poloidal flow and the reduction of zonal flows in
the stochastic layer. This inhibits the self-regulation mechanism of large scale events,
and therefore facilitates the existence of large bursts. For a high value of the incoming
heat flux, this effect is dominant and large turbulent fronts propagating in the radial
direction tend to resist the shearing induced by the stochasticity. For a case with lower
turbulence drive, the amplitudes of large events decrease in the stochastic region and
crossings appear less frequently.
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